

Bestimmung von Chlorid

Beschreibung

Die Bestimmung des Chlorid Gehaltes erfolgt durch Titration mit wässriger Silbemitrat-Lösung von 0.001 - 0.1 mol/l. Diese Bestimmung ist für wässrige oder wasserlösliche Proben mit Chlorid - Gehalten von unter 1 ppm bis 100% geeignet.

Bei sehr kleinen Chlorid-Gehalten deutlich unter 10 ppm kann es vorteilhaft sein, die Titration in Essigsäure mit einer 0.001 – 0.002 mol/l Silbernitrat-Lösung (gelöst in 90% Essigsäure) durchzuführen. Die Berechnung erfolgt als mg/l Chlorid.

Geräte

Titrator	TL 5000 oder höher
Elektrode	AgCl 62 oder AgCl 62 RG
Kabel	L1A
Rührer	Magnetrührer TM 235 oder ähnliche
Laborgeräte	Becherglas 150 ml
	Magnetrührstab 30 mm

Reagenzien

1	Silbernitratlösung 0.001 – 0.1mol/l		
2	Salpetersäure 4 mol/l		
3	Polyvinylalkohol – Lösung 0.5%		
4	Elektrolytlösung L2114 (KNO ₃ 2 mol/l + KCl 0.001 mol/l)		
5	Destilliertes Wasser		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

Die Titerbestimmung der $AgNO_3$ - Lösung erfolgt wie in der Applikationsschrift "Titerbestimmung von $AgNO_3$ " beschrieben.

Polyvinylalkohol – Lösung 0.5%

0.5 g Polyvinylalkohol werden in 100 ml destilliertem Wasser gelöst.

Reinigung der Elektrode

Die Elektrode wird mit destilliertem Wasser gereinigt. Für die Lagerung der AgCl 62 eignet sich die Elektrolytlösung L2114 Für die AgCl 62 RG kann destilliertes Wasser verwendet werden.

Probenvorbereitung

Die Probe wird in ein 150 ml Becherglas pipettiert und auf etwa 80 ml mit destilliertem Wasser aufgefüllt. Es werden 0.5 ml 4mol/l HNO_3 und 0.5-1 ml Polyvinylalkohollösung 0.5% zugegeben. Anschließend wird mit $AgNO_3-L$ ösung 0.1 mol/l auf einen Äquivalenzpunkt titriert.

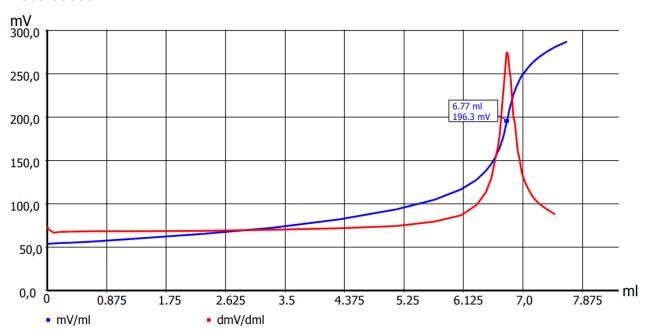
Der Verbrauch sollte bei etwa 5 – 15 ml liegen.

Die Titration kann mit Proben mit Chlorid-Gehalten von wenigen ppm - 100% durchgeführt werden, die Probenmenge muss allerdings angepasst werden. Bei Proben mit kleinen Chlorid-Gehalten unter 200 mg/l sollten AgNO₃-Lösungen mit 0.02 mol/l oder geringer verwendet werden.

Probenmenge für die Titration mit				
0.1 mol/l AgNO₃				
Chlorid-Gehalt [%]	Probenmenge [g]			
< 0.1	> 10			
0.1 – 1	1 – 10			
1 – 10	0.1 – 2			
10 – 50	0.05 – 0.1			
50 - 100	0.05			

Überprüfung der Silberelektrode

Eine Kalibrierung mit Puffern oder vergleichbaren Prüflösungen wie bei pH-Elektroden ist nicht möglich, aber auch nicht erforderlich. Bei einer pH-Elektrode wird ja die gemessene Spannung in mV im pH-Meter/Titrator durch ermittelten Werte der pH-Kalibrierung wie Steigung und Nullpunkt in pH-Werten umgerechnet. Außerdem gibt es viele Methoden, bei dem auf einen bestimmten pH-Wert titriert werden muss wie z.B. bei der Bestimmung der Gesamtsäure in Getränken.


Bei der Chloridtitration ist das nicht der Fall. Hier wird immer auf einen Äquivalenzpunkt (EQ) titriert. Das heißt es kommt nicht auf einen bestimmtes Messpotential an, sondern die Veränderung des Messpotentials während mehrerer Messpunkte.

Wir empfehlen zur Überprüfung der Silberelektrode eine Titration von einem Standard wir NaCl durchzuführen und die entstandene Titrationskurve mit einer gespeicherten Titrationskurve eines Standards am Anfang der Verwendung zur vergleichen. Die Potentiale sollten in der Größenordnung wie am Anfang sein. Wichtiger ist aber das Aussehen der Kurve. Diese sollte nicht verrauscht/gezackt sein.

xylem | Titration 114 AN 2

Titrationsparameter

Probentitration

Standardmethode	Chloride in mg I		
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	3 s
		Max. Wartezeit	15 s
		Messzeit	3 s
		Drift	10 mV/min
Startwartezeit	0 s		
Dynamik	mittel	Max. Schrittweite	1.0 ml
		Steigung bei max. ml	10
		Min. Schrittweite	0.02 ml
		Steigung bei min. ml	120
Dämpfung	keine	Titrationsrichtung	steigend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	150
Max. Titrationsvolumen	50 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

Bei der Titration von sehr geringen Chlorid-Gehalten oder bei der Titration in Eisessig sollte die Mindestwartezeit auf 6s und die Drift auf 5 mV/min eingestellt werden. In diesem Fall sollte auch die Dynamik auf Flach eingestellt werden.

Bei manchen Proben kann es vorkommen, dass die Titrationskurve sehr flach ist und der Titrator die Titration nicht am EQ beendet. In diesem Fall kann der Steigungswert für den EQ verringert werden.

xylem | Titration 114 AN 3

Berechnung:

$$Result [mg/l] = \frac{(EQ1 - B) * T * M * F1}{W * F2}$$

В	0	Blindwert
EQ1		Verbrauch des Titrationsmittels am ersten EQ
T	WA	Exakte Konzentration des Titrationsmittels
М	35.45	Molekulargewicht von Chlorid
V	man	Probenmenge [ml]
F1	1000	Umrechnungsfaktor 1
F2	1	Umrechnungsfaktor 2

Soll die Berechnung nicht als mg/l Chlorid, sondern als mg/l NaCl erfolgen, so wird für M die molare Masse von NaCl 58.44 g/mol eingestellt.

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

